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Autonomous Hamiltonian systemsAutonomous Hamiltonian systems
Consider an N degree of freedom autonomous 
Hamiltonian system having a Hamiltonian function of the 
form:

H(q1,q2,…,qN, p1,p2,…,pN)
The time evolution of an orbit (trajectory) with initial 
condition

P(0)=(q1(0), q2(0),…,qN(0), p1(0), p2(0),…,pN(0))

positions momenta

is governed by the Hamilton’s equations of motion
∂ ∂
∂ ∂

i i

i i

dp dqH H= -    ,    =
dt q dt p
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Variational EquationsVariational Equations
We use the notation x = (q1,q2,…,qN,p1,p2,…,pN)T. The
deviation vector from a given orbit is denoted by

v = (dx1, dx2,…, dxn)T , with n=2N

The time evolution of v is given by 
the so-called variational equations:

⋅ ⋅
dv

= -J P  v
dt

 i, j = 1, 2, , n
⎛ ⎞ ∂
⎜ ⎟ ∂ ∂⎝ ⎠

…
2

N N
i j

N N i j

0 -I H
J =   ,  P =

I 0 x x

where

Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93
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Symplectic MapsSymplectic Maps
Consider an 2N-dimensional symplectic map T. In this 
case we have discrete time.

The evolution of an orbit with initial condition
P(0)=(x1(0), x2(0),…,x2N(0))

is governed by the equations of map T
P(i+1)=T P(i)  ,  i=0,1,2,…

The evolution of an initial deviation vector
v(0) = (dx1(0), dx2(0),…, dx2N(0))

is given by the corresponding tangent map
∂

⋅
∂

…
i

T
v(i +1) = v(i)  , i = 0,1,2,

P
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LyapunovLyapunov ExponentsExponents
Roughly speaking, the Lyapunov exponents of a given 
orbit characterize the mean exponential rate of divergence
of trajectories surrounding it. 

Consider an orbit in the 2N-dimensional phase space with 
initial condition x(0) and an initial deviation vector from 
it v(0). Then the mean exponential rate of divergence is: 

→∞t

v(t)1
σ(x(0), v(0)) = lim ln

t v(0)
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Maximum Maximum LyapunovLyapunov ExponentExponent

If we start with more than one linearly independent 
deviation vectors they will align to the direction defined by 
the largest Lyapunov exponent for chaotic orbits. 

σ1=0 Æ Regular motion
σ1π0 Æ Chaotic motion
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Definition of Smaller Definition of Smaller 
Alignment Index (SALI)Alignment Index (SALI)

Consider the 2N-dimensional phase space of a conservative dynamical 
system (symplectic map or Hamiltonian flow). 

An orbit in that space with initial condition :
P(0)=(x1(0), x2(0),…,x2N(0))

and a deviation vector
v(0)=(dx1(0), dx2(0),…, dx2N(0))

The evolution in time (in maps the time is discrete and is equal to the 
number n of the iterations) of a deviation vector is defined by:
•the variational equations (for Hamiltonian flows) and
•the equations of the tangent map (for mappings) 
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Definition of SALIDefinition of SALI
We follow the evolution in time of two different initial 
deviation vectors (v1(0), v2(0)), and define SALI (Ch.S. 
2001, J. Phys. A) as:

When the two vectors become collinear

SALI(t) → 0

{ }ˆ ˆ ˆ ˆ1 2 1 2SALI(t) = min v (t) + v (t) , v (t) - v (t)

ˆ 1
1

1

v (t)
v (t) =

v (t)

where
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Behavior of SALI for Behavior of SALI for chaotic motionchaotic motion
For chaotic orbits the two initially 
different deviation vectors tend to
coincide with the direction defined 
by the maximum Lyapunov
exponent.
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Behavior of SALI for Behavior of SALI for chaotic motionchaotic motion
The evolution of a deviation vector can be approximated by:

ˆ ˆ ˆ≈∑ i 1 2

n
σ t σ t σ t(1) (1) (1)

1 i i 1 1 2 2
i=1

v (t) = c e u  c e u + c e u

where σ1>σ2≥… ≥ σn are the Lyapunov exponents. and       j=1, 2, …, 
2N the corresponding eigendirections.

ˆ ju
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Behavior of SALI for Behavior of SALI for chaotic motionchaotic motion
The evolution of a deviation vector can be approximated by:

ˆ ˆ ˆ≈∑ i 1 2

n
σ t σ t σ t(1) (1) (1)

1 i i 1 1 2 2
i=1

v (t) = c e u  c e u + c e u

In this approximation, we derive a leading order estimate of the ratio
ˆ ˆ ˆ ˆ≈ ± +

1 2

1 2

1

σ t σ t(1) (1) (1)
-(σ -σ )t1 1 1 2 2 2

1 2σ t(1) (1)
1 1 1

v (t) c e u + c e u c
= u e u

v (t) c e c
and an analogous expression for v2

ˆ ˆ ˆ ˆ≈ ± +
1 2

1 2

1

σ t σ t(2) (2) (2)
-(σ -σ )t2 1 1 2 2 2

1 2σ t(2) (2)
2 1 1

v (t) c e u + c e u c
= u e u

v (t) c e c

where σ1>σ2≥… ≥ σn are the Lyapunov exponents. and       j=1, 2, …, 
2N the corresponding eigendirections.

ˆ ju
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Behavior of SALI for Behavior of SALI for chaotic motionchaotic motion
The evolution of a deviation vector can be approximated by:

ˆ ˆ ˆ≈∑ i 1 2

n
σ t σ t σ t(1) (1) (1)

1 i i 1 1 2 2
i=1

v (t) = c e u  c e u + c e u

In this approximation, we derive a leading order estimate of the ratio
ˆ ˆ ˆ ˆ≈ ± +

1 2

1 2

1

σ t σ t(1) (1) (1)
-(σ -σ )t1 1 1 2 2 2

1 2σ t(1) (1)
1 1 1

v (t) c e u + c e u c
= u e u

v (t) c e c
and an analogous expression for v2

ˆ ˆ ˆ ˆ≈ ± +
1 2

1 2

1

σ t σ t(2) (2) (2)
-(σ -σ )t2 1 1 2 2 2

1 2σ t(2) (2)
2 1 1

v (t) c e u + c e u c
= u e u

v (t) c e c
So we get:

⎧ ⎫⎪ ⎪ ≈ ±⎨ ⎬
⎪ ⎪⎩ ⎭

1 2

(1) (2)
-(σ -σ )t1 2 1 2 2 2

(1) (2)
1 2 1 2 1 1

v (t) v (t) v (t) v (t) c c
SALI(t) = min + , - e

v (t) v (t) v (t) v (t) c c

where σ1>σ2≥… ≥ σn are the Lyapunov exponents. and       j=1, 2, …, 
2N the corresponding eigendirections.

ˆ ju
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Behavior of SALI for Behavior of SALI for chaotic motionchaotic motion

∑
3

2 2 2 2i
i i 1 2 1 3

i=1

ω
H = (q + p ) + q q + q q

2

We test the validity of the approximation SALIμe-(σ1-σ2)t (Ch.S., 
Antonopoulos, Bountis, Vrahatis, 2004, J. Phys. A) for a chaotic orbit 
of the 3D Hamiltonian

with ω1=1, ω2=1.4142, ω3=1.7321, Η=0.09

σ1ª0.037

σ2ª0.011

slope=-(σ1-σ2)/ln(10)
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Behavior of SALI for Behavior of SALI for regular motionregular motion
Regular motion occurs on a torus and two different initial 
deviation vectors become tangent to the torus, generally  
having different directions. 
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Applications Applications –– HHéénonnon--HeilesHeiles systemsystem

For E=1/8 we consider the orbits with initial conditions:
Regular orbit, x=0, y=0.55, px=0.2417, py=0
Chaotic orbit, x=0, y=-0.016, px=0.49974, py=0
Chaotic orbit, x=0, y=-0.01344, px=0.49982, py=0

As an example, we consider the 2D Hénon-Heiles system:
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Applications Applications –– HHéénonnon--HeilesHeiles systemsystem

y

py
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Applications Applications –– 4D map4D map
′
′
′
′

1 1 2

2 2 1 2 1 2 3 4

3 3 4

4 4 3 4 1 2 3 4

x = x + x

x = x  - ν sin(x  + x ) - μ [1 - cos(x  + x  + x  + x )] 
(mod 2π)

x = x  + x

x = x  - κ sin(x  + x ) - μ [1 - cos(x  + x  + x  + x )] 

-3 -2 -1 0 1 2 3
X 

1

-3

-2

-1

0

1

2

3

X 
2 C D

For ν=0.5, κ=0.1, μ=0.1 we consider the orbits:
regular orbit C with initial conditions x1=0.5, x2=0, x3=0.5, x4=0.
chaotic orbit D with initial conditions x1=3, x2=0, x3=0.5, x4=0.

2 3 4 5 6 7
logN 

-6

-5

-4

-3

-2

-1

lo
gL

 N
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Applications Applications –– 4D Accelerator map4D Accelerator map
We consider the 4D symplectic map

′ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟′ ⎜ ⎟⎜ ⎟ ⎜ ⎟×
⎜ ⎟⎜ ⎟ ⎜ ⎟′
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠ ⎝ ⎠

11 1 1

2 2
2 1 32 1 1

33 2 2

4 1 34 2 2

xx cosω -sinω 0 0

x + x - xx sinω cosω 0 0
 =

xx 0 0 cosω -sinω

x - 2x xx 0 0 sinω cosω
describing the instantaneous sextupole ‘kicks’ experienced by a particle as it 
passes through an accelerator (Turchetti & Scandale 1991, Bountis & 
Tompaidis 1991, Vrahatis et al. 1996, 1997). 

x1 and x3 are the particle’s deflections from the ideal circular orbit, in the 
horizontal and vertical directions respectively.
x2 and x4 are the associated momenta
ω1, ω2 are related to the accelerator’s tunes qx, qy by ω1=2πqx,   ω2=2πqy

Our goal is to estimate the region of stability of the particle’s motion, the so-
called dynamic aperture of the beam (Bountis, Ch.S., 2006, Nucl. Inst Meth. 
Phys Res. A) and to increase its size using chaos control techniques (Boreaux, 
Carletti, Ch.S., Vittot, 2011, acc-ph/1007.1562, Boreaux, Carletti, Ch.S., 
Papaphilippou, Vittot, 2011, acc-ph/1103.5631).
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4D Accelerator map 4D Accelerator map –– ""GlobalGlobal"" study study 
Regions of different values of the SALI on the subspace 
x2(0)=x4(0)=0, after 105 iterations (qx=0.61803 qy=0.4152)

4D map Controlled 4D map

log(SALI)
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4D Accelerator map 4D Accelerator map –– ""GlobalGlobal"" study study 
Increase of the dynamic aperture

We evolve many orbits in 4D hyperspheres of radius r 
centered at x1=x2=x3=x4=0, for 105 iterations.

4D map
Controlled 4D map

Regular orbits

Chaotic orbits
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Applications Applications –– 2D map2D map
′
′
1 1 2

2 2 1 2

x = x + x
  (mod 2π)

x = x  - ν sin(x  + x )

-3 -2 -1 0 1 2 3
X 

1

-3

-2

-1

0

1

2

3

X 
2 A B

For ν=0.5 we consider the orbits:
regular orbit A with initial conditions x1=2, x2=0.
chaotic orbit B with initial conditions x1=3, x2=0.
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Behavior of SALIBehavior of SALI
2D maps

SALI→0 both for regular and chaotic orbits
following, however, completely different time rates which 
allows us to distinguish between the two cases.

Hamiltonian flows and multidimensional maps
SALI→0 for chaotic orbits

SALI→constant ≠ 0 for regular orbits
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QuestionsQuestions

• Can rapidly reveal the nature of chaotic orbits with 
σ1ªσ2 (SALIμe-(σ1-σ2)t)? 

• Depends on several Lyapunov exponents for chaotic 
orbits?

• Exhibits power-law decay for regular orbits depending 
on the dimensionality of the tangent space of the 
reference orbit as for 2D maps?

Can we generalize SALI so that the new index:
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Definition of Generalized Definition of Generalized 
Alignment Index (GALI)Alignment Index (GALI)

SALI effectively measures the ‘area’ of the parallelogram 
formed by the two deviation vectors.
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Definition of GALIDefinition of GALI
In the case of an N degree of freedom Hamiltonian system or 
a 2N symplectic map we follow the evolution of 

k deviation vectors with 2≤k≤2N, 

and define (Ch.S., Bountis, Antonopoulos, 2007, Physica D)
the Generalized Alignment Index (GALI) of order k :

ˆ ˆ ˆ∧ ∧ ∧k 1 2 kGALI (t) = v (t)  v (t)  ...  v (t)

ˆ 1
1

1

v (t)
v (t) =

v (t)

where
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Wedge productWedge product
We consider as a basis of the 2N-dimensional tangent space of the 
system the usual set of orthonormal vectors:

ˆ ˆ ˆ1 2 2Ne = (1,0,0, ...,0),  e = (0,1,0, ...,0), ..., e = (0,0,0, ...,1)
Then for k deviation vectors we have:

ˆˆ
ˆˆ

ˆˆ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⋅
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

11 12 1 2N 11

21 22 2 2N 22

k1 k2 k 2N 2Nk

v v v ev
v v v ev

=   

v v v ev

"
"

# # # ##
"

ˆ ˆ ˆˆ ˆ ˆ
≤ ≤

∧ ∧ ∧ ∧ ∧ ∧∑

1 2 k

1 2 k

1 2 k

1 2 k

1 2 k

1 i 1 i 1 i

2 i 2 i 2 i
1 2 k i i i

1 i <i < <i 2N

k i k i k i

v v v

v v v
v v v =  e e e  

v v v
"

"
"

" "
# # #

"
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Norm of wedge productNorm of wedge product

We define as ‘norm’ of the wedge product the quantity :

ˆ ˆ ˆ
≤ ≤

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪∧ ∧ ∧ ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

∑

1 2 k

1 2 k

1 2 k

1 2 k

1/22
1 i 1 i 1 i

2 i 2 i 2 i
1 2 k

1 i <i < <i 2N

k i k i k i

v v v

v v v
v v v =  

v v v
"

"

"
"

# # #
"
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Computation of Computation of GALI GALI -- ExampleExample
Let us compute GALI3 in the case of 2D Hamiltonian system (4-
dimensional phase space).

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

ˆ

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

1
1 11 12 13 14

2
2 21 22 23 24

3
3 31 32 33 34

4

e
v v v v v

e
v v v v v

e
v v v v v

e
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Computation of Computation of GALI GALI -- ExampleExample
Let us compute GALI3 in the case of 2D Hamiltonian system (4-
dimensional phase space).

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

ˆ

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

1
1 11 12 13 14

2
2 21 22 23 24

3
3 31 32 33 34

4

e
v v v v v

e
v v v v v

e
v v v v v

e

ˆ ˆ ˆ
⎧
⎪∧ ∧ ⎨
⎪
⎩

2
11 12 13

3 1 2 3 21 22 23

31 32 33

v v v
GALI = v v v = v v v

v v v
+

Columns   1        2        3 
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Computation of Computation of GALI GALI -- ExampleExample
Let us compute GALI3 in the case of 2D Hamiltonian system (4-
dimensional phase space).

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

ˆ

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

1
1 11 12 13 14

2
2 21 22 23 24

3
3 31 32 33 34

4

e
v v v v v

e
v v v v v

e
v v v v v

e

ˆ ˆ ˆ
⎧
⎪∧ ∧ ⎨
⎪
⎩

2
11 12 13

3 1 2 3 21 22 23

31 32 33

v v v
GALI = v v v = v v v

v v v
+

Columns   1        2        3 2
11 12 14

21 22 24

31 32 34

v v v
v v v +
v v v

1        2        4 



H. Skokos Department of Maths, UCT, Cape Town, South Africa 25 May 2011

Computation of Computation of GALI GALI -- ExampleExample
Let us compute GALI3 in the case of 2D Hamiltonian system (4-
dimensional phase space).

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

ˆ

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

1
1 11 12 13 14

2
2 21 22 23 24

3
3 31 32 33 34

4

e
v v v v v

e
v v v v v

e
v v v v v

e

ˆ ˆ ˆ
⎧
⎪∧ ∧ ⎨
⎪
⎩

2
11 12 13

3 1 2 3 21 22 23

31 32 33

v v v
GALI = v v v = v v v

v v v
+

Columns   1        2        3 2
11 12 14

21 22 24

31 32 34

v v v
v v v +
v v v

1        2        4 

2
11 13 14

21 23 24

31 33 34

v v v
v v v +
v v v
1        3        4 
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Computation of Computation of GALI GALI -- ExampleExample
Let us compute GALI3 in the case of 2D Hamiltonian system (4-
dimensional phase space).

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

ˆ

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

1
1 11 12 13 14

2
2 21 22 23 24

3
3 31 32 33 34

4

e
v v v v v

e
v v v v v

e
v v v v v

e

ˆ ˆ ˆ
⎧
⎪∧ ∧ ⎨
⎪
⎩

2
11 12 13

3 1 2 3 21 22 23

31 32 33

v v v
GALI = v v v = v v v

v v v
+

Columns   1        2        3 2
11 12 14

21 22 24

31 32 34

v v v
v v v +
v v v

1        2        4 

2
11 13 14

21 23 24

31 33 34

v v v
v v v +
v v v
1        3        4 

⎫
⎪
⎬
⎪
⎭

1/22
12 13 14

22 23 24

32 33 34

v v v
v v v
v v v
2        3        4 
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Efficient computation of Efficient computation of GALIGALI
For k deviation vectors:

ˆ ˆ ˆ )
≤ ≤

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪∧ ∧ ∧ ⋅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

∑

1 2 k

1 2 k

1 2 k

1 2 k

1/22
1 i 1 i 1 i

2 i 2 i 2 i T
1 2 k

1 i <i < <i 2N

k i k i k i

v v v

v v v
v v v =  = det(A A

v v v
"

"

"
"

# # #
"

the  ‘norm’ of the wedge product is given by:

ˆ ˆˆ
ˆ ˆˆ

ˆ ˆˆ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⋅ ⋅
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

11 12 1 2N 1 11

21 22 2 2N 2 22

k1 k2 k 2N 2N 2Nk

v v v e ev
v v v e ev

 =   = A  

v v v e ev

"
"

# # # # ##
"
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Efficient computation of Efficient computation of GALIGALI
From Singular Value Decomposition (SVD) of AT we get:

) ) )

) , , ) )

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ∏

T T T T T

k
2 T 2 2 2 T 2

1 2 k i
i=1

det(A A = det(V W U U W V = det(V W I W V =

det(V W V = det(V diag(w w w V = w…

where U is a column-orthogonal 2N×k matrix (UT·U=I), VT is a k×k
orthogonal matrix (V·VT=I), and W is a diagonal k×k matrix with 
positive or zero elements, the so-called singular values. So, we get:

⋅ ⋅T TA = U W V

Thus, GALIk is computed by:

( ) ( )⋅ ⇒ = ∑∏
k k

T
k i k i

i=1i=1

GALI = det(A A ) = w   log GALI log w
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Behavior of Behavior of GALIGALIkk for for chaotic motionchaotic motion
GALIk (2≤k≤2N) tends exponentially to zero with 
exponents that involve the values of the first k largest 
Lyapunov exponents σ1, σ2, …, σk :

[ ]1 2 1 3 1 k- (σ -σ )+(σ -σ )+...+(σ -σ ) t
kGALI (t)  e∝

The above relation is valid even if some Lyapunov
exponents are equal, or very close to each other.
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Behavior of Behavior of GALIGALIkk for for chaotic motionchaotic motion
Using the approximation:

ˆ ˆ ˆ ˆ ,      + + + ≈∑ "j 2N1 2 1

2N
σ t σ tσ t σ t σ ti i i i i

i j j 1 1 2 2 2N 2N i 1
j=1

v (t) = c e u  = c e u  c e u c e u v (t) c e

ˆ
ˆ

ˆ

⎡
⎢
⎢

⎡ ⎤ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥⎣ ⎦ ⎢

⎣

1 3 1 2N1 2

1 3 1 2N1 2

1 3 1 2N1 2

1 11
-(σ -σ )t -(σ -σ )t-(σ -σ )t 3 2N2

1 1 1 1
1 1 1

2 221
-(σ -σ )t -(σ -σ )t-(σ -σ )t 3 2N2

22 2 2 2
1 1 1

k k kk
-(σ -σ )t -(σ -σ )t-(σ -σ )t 3 2N2

k k k k
1 1 1

c cc
s e e e

c c c
v

c cc
s e e ev

c c c = 

v
c cc

s e e e
c c c

"

"
#

# # # #

"

ˆ
ˆ

ˆ

⎤
⎥
⎥

⎡ ⎤⎥
⎢ ⎥⎥
⎢ ⎥⎥ ⋅
⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥⎣ ⎦⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

1

2

2N

u
u

 

u
#

with i
i 1s = sign(c ).

where σ1 >σ2≥… ≥ σn are the Lyapunov exponents, and       j=1, 2, …, 2N 
the corresponding eigendirections, we get

jû



H. Skokos Department of Maths, UCT, Cape Town, South Africa 25 May 2011

Behavior of Behavior of GALIGALIkk for for chaotic motionchaotic motion
From all determinants appearing in the definition of GALIk the one 
that decreases the slowest is the one containing the first k columns of 
the previous matrix:

1 31 2 1 k

1 31 2 1 k

1 31 2 1 k

1 11 1 1 1
-(σ -σ )t-(σ -σ )t -(σ -σ )t3 32 k 2 k

1 11 1 1 1 1 1
1 1 1 1 1 1

2 22 2 2 2
-(σ -σ )t-(σ -σ )t -(σ -σ )t3 32 k 2 k

2 22 2 2 2 2
1 1 1 1 1 1

kk k
-(σ -σ )t-(σ -σ )t -(σ -σ )t32 k

k k k k
1 1 1

c cc c c c
s e e e s

c c c c c c

c cc c c c
s e e e s

c c c c c c =

cc c
s e e e

c c c

" "

" "

# # # #

"

[ ]⋅ 1 2 1 3 1 k- (σ -σ )+(σ -σ )+ +(σ -σ ) t2

kk k
32 k

k k k k
1 1 1

e  

cc c
s

c c c

"

# # # #

"

[ ]1 2 1 3 1 k- (σ -σ )+(σ -σ )+...+(σ -σ ) t
kGALI (t)  e∝

Thus
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Behavior of Behavior of GALIGALIkk for for chaotic motionchaotic motion

2D Hamiltonian (Hénon-Heiles system)

σ1ª0.047
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Behavior of Behavior of GALIGALIkk for for chaotic motionchaotic motion

σ1ª0.03

σ2ª0.008

∑
3

2 2 2 2i
3 i i 1 2 1 3

i=1

ω
H = (q + p ) + q q + q q

2

3D system:

with ω1=1, ω2=      , ω3=       , Η3=0.09.2 3
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Behavior of Behavior of GALIGALIkk for for chaotic motionchaotic motion
N particles Fermi-Pasta-Ulam (FPU) system:

with fixed boundary conditions, N=8 and β=1.5.

( ) ( )⎡ ⎤
⎢ ⎥⎣ ⎦

∑ ∑
N N

2 42
i i+1 i i+1 i

i=1 i=0

1 1 βH = p + q - q + q - q
2 2 4
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Behavior of Behavior of GALIGALIkk forfor regular motionregular motion
If the motion occurs on an s-dimensional torus with s≤N then the 
behavior of GALIk is given by (Ch.S., Bountis, Antonopoulos, 2008, 
Eur. Phys. J. Sp. Top.):

⎧
⎪ ≤ ≤
⎪
⎪ ≤⎨
⎪
⎪

≤⎪⎩

k k-s

2(k -N)

constant if 2 k s
1GALI (t)  if s < k 2N - s

t
1 if 2N - s < k 2N 

t

∝

while in the common case with s=N we have :

≤ ≤⎧
⎪
⎨

≤⎪⎩
k

2(k-N)

constant if 2 k N
GALI (t)  1 if N < k 2N

t
∝
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Behavior of Behavior of GALIGALIkk for for regular motionregular motion

Regular orbits of an N degree of freedom Hamiltonian 
system lie on N-dimensional tori.

Performing a local transformation to action-angle 
variables we get for the Hamilton’s equations of motion:

where Ji0, θi0, i=1,2,…,N are the initial conditions.

N1,2,...,i  ,
t)J,...,J,(Jωθ(t)θ

J(t)J
)J,...,J,(Jωθ

0J

N02010ii0i

i0i

N21ii

i =
⋅+=

=
⇒

⎭
⎬
⎫

=
=

�
�
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Behavior of Behavior of GALIGALIkk for for regular motionregular motion
The variational equations give:

where ωij=∂ωi/∂Jj|J0, i=1,2,…,N are constants.

Using as a basis of the 2N-dimensional tangent space of the flow the 2N 
unit vectors such that the first N of them,
correspond to the N action variables and the N remaining ones,

to the conjugate angle variables, we write any unit 
deviation vector as: 

{ }ˆ ˆ ˆ1 2 2Nu ,u , ...,u ˆ ˆ ˆ1 2 Nu ,u , ...,u

ˆ ˆ ˆN+1 N+2 2Nu ,u , ...,u

ˆ ˆ ˆ
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∝

∑ ∑ ∑
N N N

i i i
i j j j kj j N+ j

j=1 j=1 k =1i

i

1v (t) = ξ (0)u + η (0) + ω ξ (0) t u
v (t)

with   v (t) t

[ ] N1,2,...,i  ,t(0)ξω(0)η(t)η
(0)ξ(t)ξ

ξωη
0ξ

N

1j jijii

ii
N

1j jiji

i =⋅⋅+=
=

⇒
⎪⎭

⎪
⎬
⎫

⋅=
=

∑∑ ==
�

�
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Behavior of Behavior of GALIGALIkk for for regular motionregular motion
For k deviation vectors we have:

ˆ
ˆ

ˆ

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⋅
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⋅

∏

∑ ∑

∑ ∑

∑

1

2
k

m
m=1k

N N
1 1 1 1 1 1
1 Ν 1 1m m N Nm m

m=1 m=1
N N

2 2 2 2 2 2
1 Ν 1 1m m N Nm m

m=1 m=1

N
k k k k
1 Ν 1 1m m

m=1

v
v 1 = 

v (t)
v

ξ (0) ξ (0) η (0) + ω ξ (0) t η (0) + ω ξ (0) t

ξ (0) ξ (0) η (0) + ω ξ (0) t η (0) + ω ξ (0) t

ξ (0) ξ (0) η (0) + ω ξ (0) t

#

… "

… "

# # # #

…

ˆ
ˆ

ˆ

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

∑

1

2

2NN
k k
N Nm m

m=1

u
u

 

u
η (0) + ω ξ (0) t

#

"
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Behavior of Behavior of GALIGALIkk for for regular motionregular motion
For 2≤k≤N the slowest decreasing determinants are the ones whose k 
columns are chosen among the last N columns of the evolution matrix

⋅

∑ ∑

∑ ∑
∏

∑ ∑

1 1 k k

1 1 k k

1 1 k k

N N
1 1 1 1
j j m m j j m m

m=1 m=1
N N

2 2 2 2
j j m m j j m m

m=1 m=1k

m
m=1 N N

k k 2 k
j j m m j j m m

m=1 m=1

η (0) + ω ξ (0) t η (0) + ω ξ (0) t

η (0) + ω ξ (0) t η (0) + ω ξ (0) t1

v (t)

η (0) + ω ξ (0) t η (0) + ω ξ (0) t

…

…

# #

…

∝

⋅ ⋅ ⋅

1 1 1 k k k 1 1 1 k k k

1 1 1 k k k 1 1 1 k k k

1 1 1 k k k 1 1 1 k k k

1 1 1 1
j m m j m m j m m j m m

2 2 2 2
j m m j m m j m m j m mk

k k

k k k k
j m m j m m j m m j m m

ω ξ (0) t ω ξ (0) t ω ξ (0) ω ξ (0)

ω ξ (0) t ω ξ (0) t ω ξ (0) ω ξ (0)1 1 t constant
t t

ω ξ (0) t ω ξ (0) t ω ξ (0) ω ξ (0)

… …

… …

# # # #
… …

∝ ∝ ≈ 
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Behavior of Behavior of GALIGALIkk for for regular motionregular motion
For N<k≤2N the slowest decreasing determinants are the ones 
containing the last N columns of the evolution matrix

⋅

∑ ∑

∑ ∑
∏

∑

1 k-Ν

1 k-Ν

1 k-Ν

N N
1 1 1 1 1 1
j j 1 1m m N Nm m

m=1 m=1
N N

2 2 2 2 2 2
j j 1 1m m N Nm m

m=1 m=1k

m
m=1 N

k k k k k k
j j 1 1m m N Nm m

m=1

ξ (0) ξ (0) η (0) + ω ξ (0) t η (0) + ω ξ (0) t

ξ (0) ξ (0) η (0) + ω ξ (0) t η (0) + ω ξ (0) t1

v (t)

ξ (0) ξ (0) η (0) + ω ξ (0) t η (0) + ω ξ (0

… "

… "

# # # #

… " ∑
N

m=1

) t

∝

⋅

1 k-Ν 1 k-Ν k-N+1 1 1 N 2N-k 1

1 k-Ν 1 k-Ν k-N+1 1 1 N 2N-k 1

1 k-Ν 1 k-Ν k-N+1 1 1

1 1 1 1 1 1
j j i i i m m i m m

2 2 2 2 2 2
j j i i i m m i m m

k

k k k k k
j j i i i m m

ξ (0) ξ (0) η (0) η (0) ω ξ (0) t ω ξ (0) t

ξ (0) ξ (0) η (0) η (0) ω ξ (0) t ω ξ (0) t1
t

ξ (0) ξ (0) η (0) η (0) ω ξ (0

… … …

… … …

# # # # # #
… …

∝ ⋅

N 2N-k 1

2N-k
k 2(k-N)

k
i m m

1 1 t
t t

) t ω ξ (0) t…

∝ ≈ 

k-N columns k-N columns 2N-k columns
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Behavior of Behavior of GALIGALIkk for for regular motionregular motion
3D Hamiltonian
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Behavior of Behavior of GALIGALIkk for for regular motionregular motion
N=8 FPU system: The unperturbed Hamiltonian (β=0) is written as a 
sum of the so-called harmonic energies Ei:

( )2 2 2
i i i i

1E = P +ω Q ,  i = 1, ..., N
2with:

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑

N N

i i i i i
i=1 i=1

2 kiπ 2 kiπ iπQ = q sin ,  P = p sin ,  ω = 2sin
N +1 N +1 N +1 N +1 2(N +1)
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Global dynamicsGlobal dynamics
• GALI2 (practically equivalent to the use of SALI)

• GALIN
Chaotic motion: GALINÆ0 
(exponential decay)
Regular motion: 
GALINÆconstantπ0

3D Hamiltonian
Subspace q3=p3=0, p2≥0 for t=1000.
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Global dynamicsGlobal dynamics
GALIk with k>N

The index tends to zero both for 
regular and chaotic orbits but with 
completely different time rates:
Chaotic motion: exponential decay
Regular motion: power law

2D Hamiltonian (Hénon-Heiles)
Time needed for GALI4<10-12
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Behavior of Behavior of GALIGALIkk

Regular motion:
GALIk →constant ≠ 0 or GALIk →0 power law decay

⎧
⎪ ≤ ≤
⎪
⎪ ≤⎨
⎪
⎪

≤⎪⎩

k k-s

2(k-N)

constant if 2 k s
1GALI (t)  if s <k 2N-s

t
1 if 2N-s <k 2N 

t

∝

[ ]1 2 1 3 1 k- (σ -σ )+(σ -σ )+...+(σ -σ ) t
kGALI (t)  e∝

Chaotic motion:
GALIk→0 exponential decay
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Regular motionRegular motion on lowon low--dimensional dimensional toritori

A regular orbit lying on a 2-dimensional torus for the N=8 
FPU system.



H. Skokos Department of Maths, UCT, Cape Town, South Africa 25 May 2011

Regular motionRegular motion on lowon low--dimensional dimensional toritori

A regular orbit lying on a 4-dimensional torus for the N=8 
FPU system.
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LowLow--dimensional dimensional toritori -- 6D map 6D map 
{ }

{ }

′ ′
′
′ ′
′
′ ′

′

1

2

3

1 1 2
K B

2 2 1 5 1 3 12π 2π

3 3 4
K B

4 4 3 1 3 5 32π 2π

5 5 6

K B
6 6 5 3 52π 2π

x = x + x

x = x  +  sin(2πx ) - sin[2π(x  - x )]+ sin[2π(x  - x )]

x = x + x

x = x  +  sin(2πx ) - sin[2π(x  - x )]+ sin[2π(x  - x )]

x = x + x

x = x  +  sin(2πx ) - sin[2π(x  - x{ }1 5

(mod 1) 

)]+ sin[2π(x  - x )]

3D torus 2D torus
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Locating lowLocating low--dimensional dimensional toritori
Orbits with q1=q2=0.1, p1=p2=p3=0, H=0.010075 for the N=4 
FPU system (Gerlach, Eggl, Ch.S., 2011, nlin.CD/1104.3127).
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ConclusionsConclusions
• Generalizing the SALI method we define the Generalized 

ALignment Index of order k (GALIk) as the volume of the 
generalized parallelepiped, whose edges are k unit deviation 
vectors. GALIk is computed as the product of the singular 
values of a matrix (SVD algorithm).

• Behaviour of GALIk : 
Chaotic motion: it tends exponentially to zero with 
exponents that involve the values of several Lyapunov
exponents.
Regular motion: it fluctuates around non-zero values for 
2≤k≤s and goes to zero for s<k≤2N following power-laws,
with s being the dimensionality of the torus.
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ConclusionsConclusions
• GALIk indices : 

can distinguish rapidly and with certainty between regular and chaotic motion 
can be used to characterize individual orbits as well as "chart" chaotic and 
regular domains in phase space.
are perfectly suited for studying the global dynamics of multidimentonal
systems
can identify regular motion on low–dimensional tori

• SALI/GALI methods have been successfully applied to a variety of conservative dynamical 
systems of 

Celestial Mechanics (e.g. Széll et al., 2004, MNRAS  - Soulis et al., 2008, Cel. Mech. Dyn. 
Astr. - Libert et al., 2011, MNRAS, in press)
Galactic Dynamics (e.g. Capuzzo-Dolcetta et al., 2007, Astroph. J. - Carpintero, 2008, 
MNRAS - Manos & Athanassoula, 2011, MNRAS, in press)
Nuclear Physics (e.g. Macek et al., 2007, Phys. Rev. C - Stránský et al., 2007, Phys. 
Atom. Nucl. - Stránský et al., 2009, Phys. Rev. E)
Statistical Physics (e.g. Manos & Ruffo, 2010, nlin.CD/1006.5341)
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OutlookOutlook
• Behavior of GALIk indices : 

for time dependent Hamiltonians
for systems with additional integrals of motion
for dissipative systems
for time series
near the boundary of stability islands, where the phenomenon of stickiness is prominent

• Characteristics of GALIk indices : 
estimation of the limiting GALIk value for regular orbits of multidimensional systems

• Applications
models studied at UCT
identification of the selftrapped and spreading parts of wave packets in disordered 
nonlinear lattices
performance optimization of real accelerators

• Other chaos detection techniques
Computation of the spectrum of LCEs using the compound matrix theory
Review paper: Comparative study of the various existing methods 
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