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Autonomous Hamiltonian systems

Consider an N degree of freedom autonomous
Hamiltonian system having a Hamiltonian function of the

form: positions momenta
A A

f

f \ \
H(q,955-++s0qns P1sP2s+ - +sPN)

The time evolution of an orbit (trajectory) with initial
condition

P(0)=(q1(0)9 qZ(O)a---an(O)a p1(0)9 pz(O)a---apN(O))

is governed by the Hamilton’s equations of motion
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Variational Equations

We use the notation X = (q,qys:--sqnsP1sPs+++sPn) - The
deviation vector from a given orbit is denoted by

v = (dx,, dx,,..., dx )T, with n=2N

The time evolution of v is given by

ﬁ='J'P'V
dt

b 0x0x,

Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93
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the so-called variational equations:

0. -I 2
J=( N Nj,P..— oH i,j=1,2,...



Symplectic Maps
Consider an 2N-dimensional symplectic map T. In this

case we have discrete time.

The evolution of an orbit with initial condition

P(0)=(x,(0), x5(0),...,x,x(0))
is governed by the equations of map T

P(i+1)=T P(i) , i=0,1,2,...

The evolution of an initial deviation vector

v(0) = (dx,(0), dx,(0),..., dx,,(0))
is given by the corresponding tangent map

V(l+1)_Z_T -v(1) ,1=0,1,2,...
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Lyapunov Exponents

Roughly speaking, the Lyapunov exponents of a given
orbit characterize the mean exponential rate of divergence
of trajectories surrounding it.

Consider an orbit in the 2N-dimensional phase space with
initial condition x(0) and an initial deviation vector from
it v(0). Then the mean exponential rate of divergence is:

s(x(0),v(0)) = lim L1 LY ®!
=t ||vo)|
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Maximum Lyapunov Exponent
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Figure 5.7. Behavior of ¢ , at the intermediate energy E = 0.125 for initial points
taken in the ordered (curves 1-3) or stochastic (curves 4-6) regions (after Benettin
et al., 1976).

If we start with more than one linearly independent
deviation vectors they will align to the direction defined by
the largest Lyapunov exponent for chaotic orbits.
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Definition of Smaller
Alignment Index (SALI)

Consider the 2N-dimensional phase space of a conservative dynamical
system (symplectic map or Hamiltonian flow).

An orbit in that space with initial condition :
P(0)=(x,(0), x,(0),...,x,1(0))

and a deviation vector
v(0)=(dx,(0), dx,(0),..., dx,,(0))

The evolution in time (in maps the time is discrete and is equal to the
number n of the iterations) of a deviation vector is defined by:

the variational equations (for Hamiltonian flows) and
*the equations of the tangent map (for mappings)

H. Skokos Department of Maths, UCT, Cape Town, South Africa 25 May 2011



Definition of SALI

We follow the evolution in time of two different initial
deviation vectors (v,(0), v,(0)), and define SALI (Ch.S.
2001, J. Phys. A) as:

SALI(t) = min {

-v, 0}

where ©
R \Y
v, () =—
[v. )
When the two vectors become collinear
SALI(t) — 0
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Behavior of SALI for chaotic motion

For chaotic orbits the two initially
different deviation vectors tend to
coincide with the direction defined
by the maximum Lyapunov
exponent.
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Behavior of SALI for chaotic motion
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Behavior of SALI for chaotic motion

The evolution of a deviation vector can be approximated by:

n
A\ (t) = chl)ecitﬁi ~ Cgl)ecltﬁl + (:(Zl)ecztﬁ2
i=1

where 6,>6,>... = 6, are the Lyapunov exponents. and ﬁj =1, 2, ...,
2N the corresponding eigendirections.
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In this approximation, we derive a leading order estimate of the ratio

1) 6t n 1) 05tA 1
v, (t) ~ ci'e’'l, +cfle™a, =+ + ¢y’ PRGN
N R U T

<
and an analogous expression for v,

v,(0) - C§2)e61tﬁ1 +Cg)ecztﬁ2 =i+ CgZ) “(61-6;)t
~ 2 = Tu, 2 € u,
v | |

eolt

c
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Behavior of SALI for chaotic motion

The evolution of a deviation vector can be approximated by:

n
v, = ceh; ~ e d, + e,
i=1
where 6,>6,>... = 6, are the Lyapunov exponents. and ﬁj =1, 2, ...,
2N the corresponding eigendirections.

In this approximation, we derive a leading order estimate of the ratio

vi(t) ced, +cle™a, _ . )

-(6;-0,)tA

= +u, + e u
Mol e T
and an analogous expression for v,
v,(0) - c§2)e61tﬁ1 T CgZ)eGZtﬁz = 40 ng) -(61-6,)t A
~ o o =0, +re u,
HVZ (t)H ‘cl ¢ ‘cl

So we get: .
Vi® L @ | vi®  v@ | | | oo

ol @l v T ol o] e

c

SALI(t) = min

J
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Behavior of SALI for chaotic motion

We test the validity of the approximation [SALIcce(¢!-52t|(Ch.S.,
Antonopoulos, Bountis, Vrahatis, 2004, J. Phys. A) for a chaotic orbit
of the 3D Hamiltonian |

.
H= Z‘ > (a; +p})+4iq, +qiq,

with =1, ®,=1.4142, ©,=1.7321, H=0.09

- ,~0.037/ T

10"

o

10*

S
- 4
-8
3 ¢,~0.011] ~ 10°F
— 2 =
= 2
oy 3 10
=]
3 S
-1 . =l 10.10
107 - -
1072 |
10™ |
104 A il " il i | i | L 10-13 1
10 100 1000 10000 100000 0 500 1000 1500 2000

Loa(t) t

H. Skokos Department of Maths, UCT, Cape Town, South Africa 25 May 2011



Behavior of SALI for regular motion

Regular motion occurs on a torus and two different initial
deviation vectors become tangent to the torus, generally
having different directions.
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Applications — Hénon-Heiles system

As an example, we consider the 2D Hénon-Heiles system:

Lo oy, Loo a0 o 1.
Ho (pi +p§,) - 5(:1:2 e y2) a2y — 2

2 2 3
For E=1/8 we consider the orbits with initial conditions:
Regular orbit, x=0, y=0.55, p,=0.2417, p,=0
Chaotic orbit, x=0, y=-0.016, p.=0.49974, py=0
Chaotic orbit, x=0, y=-0.01344, p.=0.49982, py=0

0.5 0F

log(SALI)
do

12

-0.5
0.5

-16

log(t)
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Applications — Hénon-Heiles system

0.5

Py
Il 10g(SALI) < -12

00 | . B -12 <log(SALI) < -8
| -8 <log(SALI) < -4

-4 < log(SALI)
0.5
0.5
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Applications — 4D ma

X, = x,+x,
2
X, = X,-vsin(x, +x,)-p[l-cos(x, +x, +x, +x,)]
, (mod 2m) .
X; = X;+Xx,
. X
X, = Xx,-ksin(x;+x,)-p[l-cos(x, +x,+x,+x,)] 20

For v=0.5, k=0.1, u=0.1 we consider the orbits:
regular orbit C with initial conditions x,=0.5, x,=0, x,=0.5, x,=0.

chaotic orbit D with initial conditionsx,=3, x,=0, x,=0.5,x,=0. -

logN
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Applications — 4D Accelerator map

We consider the 4D symplectic map

X; COsS®, -Sinw, 0 0 X,
X, | _|sino, cosw, 0 0 Xt X; =X,
X, 0 0 cos®, -sinm, X,
X/, 0 0 sinw, cosm, X, - 2X,X,

describing the instantaneous sextupole ‘kicks’ experienced by a particle as it
passes through an accelerator (Turchetti & Scandale 1991, Bountis &
Tompaidis 1991, Vrahatis et al. 1996, 1997).

X, and x; are the particle’s deflections from the ideal circular orbit, in the
horizontal and vertical directions respectively.

X, and x, are the associated momenta

®,, @, are related to the accelerator’s tunes q,, q, by ®,=2nq,, ©,=27nq,

Our goal is to estimate the region of stability of the particle’s motion, the so-
called dynamic aperture of the beam (Bountis, Ch.S., 2006, Nucl. Inst Meth.
Phys Res. A) and to increase its size using chaos control techniques (Boreaux,
Carletti, Ch.S., Vittot, 2011, acc-ph/1007.1562, Boreaux, Carletti, Ch.S.,
Papaphilippou, Vittot, 2011, acc-ph/1103.5631).
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4D Accelerator map — "Global" study

Regions of different values of the SALI on the subspace
x,(0)=x,(0)=0, after 105 iterations (q,=0.61803 q,=0.4152)

1 4D map 1 Controlled 4D map
-0.5 -0.5
><m 0 >»<:ﬂrJ 0 -4
M e
0.57 0.5¢ B
i—8
1 ' ' ' 1 ' ' '
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4D Accelerator map — "Global" study

Increase of the dynamic aperture

We evolve many orbits in 4D hyperspheres of radius r
centered at x,=x,=x,=x,=0, for 10 iterations.

100

4D map
| Controlled 4D map

757

50

% of orbits

o5 | Regular orbits

2s..| Chaotic orbits

0 o e e e s e e e e e e i

0 0.5 1
r
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X, = x, +x,
, . (mod 2m)
X, = X,-vsin(x,+Xx,)

For v=0.5 we consider the orbits:
regular orbit A with initial conditions x,=2, X,=0.

chaotic orbit B with initial conditions x,=3, x,=0.

logN logN
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Behavior of SALI

2D maps
SALI—0 both for regular and chaotic orbits

following, however, completely different time rates which
allows us to distinguish between the two cases.

Hamiltonian flows and multidimensional maps
SALI—0 for chaotic orbits

SALI—constant £ 0 for regular orbits
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Questions

Can we generalize SALI so that the new index:
 Can rapidly reveal the nature of chaotic orbits with

6,~X0, (SALIxe!-2t)?

* Depends on several Lyapunov exponents for chaotic
orbits?

* Exhibits power-law decay for regular orbits depending
on the dimensionality of the tangent space of the
reference orbit as for 2D maps?
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Definition of Generalized
Alignment Index (GALI)

SALI effectively measures the ‘area’ of the parallelogram
formed by the two deviation vectors.
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Definition of Generalized
Alignment Index (GALI)

SALI effectively measures the ‘area’ of the parallelogram
formed by the two deviation vectors.

v, (1)

ro V. (t)

V, =V,
NS AT 2 .
Vi V= =

Area =

v,(0)

A max |V, - v, [,[[V, + V

v,(0) SALI- ¥ -9+ ¥, }:>
P(0) 2

Trajectory Al‘ea oC SALI
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Definition of GALI

In the case of an N degree of freedom Hamiltonian system or
a 2N symplectic map we follow the evolution of

k deviation vectors with 2<k<2N,

and define (Ch.S., Bountis, Antonopoulos, 2007, Physica D)
the Generalized Alignment Index (GALI) of order k :
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Wedge product

We consider as a basis of the 2N-dimensional tangent space of the
system the usual set of orthonormal vectors:

¢, =(1,0,0,...,0), &, =(0,1,0,...,0), ..., &, =(0,0,0,...,1)

Then for k deviation vectors we have:

v Vi Y2 7 ViN ¢
\f _ Var Vo 7 Voo . €,
Vel | Yia Ve 7 Vian | [€an |
V1i1 Vli2 Vlik
A A N Vai,  Vai, 7 Vai |« A A
VAV, A AV, = Z B RN AN
1<i, <i, <---<i, <2N
Vki1 Vk12 Vkik
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Norm of wedge product

We define as ‘norm’ of the wedge product the quantity :

- 2 1/2
Vi, Vi, 7 Vi,
N N R Vai,  Yai, 7 Vo
Vl/\Vz/\"'/\VkH—< Z . . o
1<i; <i, <---<i, <2N| . . .
Vi, Vki, Vi,
S J
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Computation of GALI - Example

Let us compute GALI; in the case of 2D Hamiltonian system (4-

dimensional phase space). R

4 e ~|e

A 1
V1 V11 V12 V13 V14 ~

A e2
2 |T| Va1 Va2 Vaz VYV A

A e3
_V3 _ V31 V32 V33 V34 A

e4
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Let us compute GALI; in the case of 2D Hamiltonian system (4-

dimensional phase space). R
. ~le
A 1
V1 V11 V12 V13 V14 n
A e2
2 [T Y Va2 Va3 Vo "
A e3
_V3 _ _V31 Vs Vi3 Vy 11 A
e4
Columnsr 1 2 3 5

V11

GALI, =

v v
V, AV, /\V3H=4 Vy,, Vy, V| +
% %

V31
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Computation of GALI - Example

Let us compute GALI; in the case of 2D Hamiltonian system (4-
dimensional phase space). -

R _ él
v Vi Y2 Vi3 Vyu A
. €,
Vol=1 Vs Vo Vi Vo || 4
. €,

_V3 _ _V31 Vs Vi3 Vy 11 A

¢,

Columns 1 2 3 , 1 2 4 X
Vi

GALI, =

VvV VvV
ViV, /\V3H=4 Vor Vi Vol H[Vy Vo Vyl T
Vv VvV

V31
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Computation of GALI - Example

Let us compute GALI; in the case of 2D Hamiltonian system (4-
dimensional phase space).

GALI, =

H. Skokos

VAV, AV =4

V11

V21

_V31

V12

V13 V14
V23 V24
V33 V34

2 3
Vio Vi3
Vo Va3
Vi, Vs

Vi

T |V

V32

2

€,
e2
e3
| €4
5 1
Vi
+ vV,
31
Vis Vi
Vs Vo
Viz Vi
3 4
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V12 V14
V22 V24 +
V32 V34
2 1/2
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Efficient computation of GALI

For k deviation vectors:

V1 V11 V12 V1 2N e1 e1
V2 V21 V22 V2 2N e2 e2
—_— . —_ A . .

_Vk _ _Vkl Vk2 Vk 2N _ _eZN _ _e2N _

the ‘norm’ of the wedge product is given by:

e

172

J

f/l/\ffz/\---/\ffk||=< Z > =\/det(A-AT)
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Efficient computation of GALI

From Singular Value Decomposition (SVD) of AT we get:
A'=U-W-V'

where U is a column-orthogonal 2Nxk matrix (U U=I), V! is a kxk
orthogonal matrix (V-V'=I), and W is a diagonal kxk matrix with
positive or zero elements, the so-called singular values. So, we get:

det(A-A")=det(V-W'-U" -U-W-V')=det(V-W-1.-W-V') =
k
det(V-W? . V") =det(V -diag(w;,w;,..w;)- V') =] | w;

Thus, GALI, is computed by:

GALI, = ./det(A-A") = Hw — log(GALI) Zlog
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Behavior of GALI, for chaotic motion

GALI, (2<k<2N) tends exponentially to zero with
exponents that involve the values of the first k largest
Lyapunov exponents 6,, 6,, ..., 6, :

GALIk (t) oC e'[(61 -6, )+(6,-65)*...+(6, -6} )]t

The above relation is valid even if some Lyapunov
exponents are equal, or very close to each other.
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Behavior of GALI, for chaotic motion

Using the approximation:

—_ i oitA i _oitA i _o,tn
vi(t)—ZC].e u, =ce’'u +cevu, + -+ chye

=1

where 6,>0,=... =

c,
S
1

Sk

with s, = sign(c}).

H. Skokos

-(0,-0,)t

1

— €

-(6;-03)t

ontn

1
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Behavior of GALI, for chaotic motion

From all determinants appearing in the definition of GALI, the one

that decreases the slowest is the one containing the first k columns of
the previous matrix:
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Behavior of GALI, for chaotic motion

2D Hamiltonian (Hénon-Heiles system)
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Behavior of GALI, for chaotic motion

3D system:

H =) 2

3
i=1

(‘l. +P1 )+ q1qz + q1q3

with o,=1, ®,=/2 , ©,=+/3 , H;=0.09.

Lyapunov exponents
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Behavior of GALI, for chaotic motion

N particles Fermi-Pasta-Ulam (FPU) system:
1< |
H= Ezpf + Zl:i(qiﬂ -(; )2 +%(qi+l -(; )4:|
i=1 i=0

with fixed boundary conditions, N=8 and p=1.5.
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Behavior of GALI, for regular motion

If the motion occurs on an s-dimensional torus with s<N then the
behavior of GALI, is given by (Ch.S., Bountis, Antonopoulos, 2008,
Eur. Phys. J. Sp. Top.):

-

constant if 2<k<s
1
GALI, (t)oc - o= if s<k<2N-s
1 . <
JETEY if 2N-s<k <2N

while in the common case with s=N we have :

(constant if 2<Kk<N
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Behavior of GALI, for regular motion

Regular orbits of an N degree of freedom Hamiltonian
system lie on N-dimensional tori.

Performing a local transformation to action-angle
variables we get for the Hamilton’s equations of motion:

J. =0 J.)=1J.
i }: (0= ,i=1.2.....N

0. =0.(J,,d,00n )| 0,0 =0, + 0, (T 15T 50500 I ) €

where J,, 0,), i=1,2,...,N are the initial conditions.
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Behavior of GALI, for regular motion

The variational equations give:

g =0 &(t) £.(0)
m=2jilmij-, 0, () = n,(0)+[2 @ a(O)]

where ®;=0®,/0J;,, i=1,2,...,N are constants.

,i=1.2,...,N

Using as a basis of the 2N-dimensional tangent space of the flow the 2N
unit vectors {i,,u,,...,Uu,,} such that the first N of them, d,,a,,..., 0

correspond to the N action variables and the N remaining ones,

Uy,;5Uy,sse U,y to the conjugate angle variables, we write any unit
deviation vector as:

N
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Behavior of GALI, for regular motion

For k deviation vectors we have:

g, (0)
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Behavior of GALI, for regular motion

For 2<k<N the slowest decreasing determinants are the ones whose k
columns are chosen among the last N columns of the evolution matrix
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Behavior of GALI, for regular motion

For N<k<2N the_ slowest decreasing determinants are the ones
containing the last N columns of the evolution matrix
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Behavior of GALI, for regular motion

3D Hamiltonian
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Behavior of GALI, for regular motion

N=8 FPU system: The unperturbed Hamiltonian (f=0) is written as a
sum of the so-called harmonic energies E.:
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Global dynamics

* GALI, (practically equivalent to the use of SALI)

* GALI, 3D_Ha_milt0nian )
Chaotic motion: GALI—0 Subspace q;=p;=0, p,=0 for t=1000.
(exponential decay) 04
Regular motion:
GALI - constant+0
0.3
0
-2
Chaotic orbit 1 021
-4 - Regular orbit o
! i
= X
a sl i 0.1
[=2]
2 oL i
12 L .
0.0+
14 L | 04 -03 02 -01 0.0 0.1 02 0.3 04
i 2cl>o 200 sc‘JLo ' 8(I)0 1000 log(GALL) F !
t
H. Skokos Department of Maths, UCT, Cape Town, South Africa 25 May 2011



Global dynamics

GALI, with k>N
The index tends to zero both for 2D Hamiltonian (Hénon-Heiles)
regular and chaotic orbits but with Time needed for GALI,<10""

completely different time rates:

Chaotic motion: exponential decay
Regular motion: power law
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Behavior of GALI,

Chaotic motion:

GALI, —0 exponential decay
GALI (t) oC e'[((’l -6, )+(6,-63)+... (6, -6, )|t
k

Regular motion:

GALI, —constant # 0 or GALI, —0 power law decay

-

constant if 2<k<s
1
tk-s

1
ktz(k'N)

if s<k<2N-s

if 2N-s<k<2N
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Regular motion on low-dimensional tori

A regular orbit lying on a 2-dimensional torus for the N=8
FPU system.
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Regular motion on low-dimensional tori

A regular orbit lying on a 4-dimensional torus for the N=8
FPU system.
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Log(GALIs)

H. Skokos

Low-dlmensmnal tori - 6D map
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Locating low-dimensional tori

Orbits with q,=q,=0.1, p,=p,=p;=0, H=0.01007S for the N=4
FPU system (Gerlach, Eggl, Ch.S., 2011, nlin.CD/1104.3127).
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Locating low-dimensional tori

Orbits with q,=q,=0.1, p,=p,=p;=0, H=0.01007S for the N=4
FPU system (Gerlach, Eggl, Ch.S., 2011, nlin.CD/1104.3127).
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Locating low-dimensional tori

Orbits with q,=q,=0.1, p,=p,=p;=0, H=0.01007S for the N=4
FPU system (Gerlach, Eggl, Ch.S., 2011, nlin.CD/1104.3127).
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Locating low-dimensional tori

Orbits with q,=q,=0.1, p,=p,=p;=0, H=0.01007S for the N=4
FPU system (Gerlach, Eggl, Ch.S., 2011, nlin.CD/1104.3127).
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Conclusions

* Generalizing the SALI method we define the Generalized
ALignment Index of order k (GALI,) as the volume of the
generalized parallelepiped, whose edges are k unit deviation
vectors. GALI, is computed as the product of the singular
values of a matrix (SVD algorithm).

* Behaviour of GALI, :

v'Chaotic motion: it tends exponentially to zero with
exponents that involve the values of several Lyapunov
exponents.

v Regular motion: it fluctuates around non-zero values for
2<k<s and goes to zero for s<k<2N following power-laws,
with s being the dimensionality of the torus.
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Conclusions

* GALI indices :

v
v

v

v

can distinguish rapidly and with certainty between regular and chaotic motion

can be used to characterize individual orbits as well as ""chart" chaotic and
regular domains in phase space.

are perfectly suited for studying the global dynamics of multidimentonal
systems

can identify regular motion on low—dimensional tori

 SALI/GALI methods have been successfully applied to a variety of conservative dynamical
systems of

v

v

v

Celestial Mechanics (e.g. Széll et al., 2004, MNRAS - Soulis et al., 2008, Cel. Mech. Dyn.
Astr. - Libert et al., 2011, MNRAS, in press)

Galactic Dynamics (e.g. Capuzzo-Dolcetta et al., 2007, Astroph. J. - Carpintero, 2008,
MNRAS - Manos & Athanassoula, 2011, MNRAS, in press)

Nuclear Physics (e.g. Macek et al., 2007, Phys. Rev. C - Stransky et al., 2007, Phys.
Atom. Nucl. - Stransky et al., 2009, Phys. Rev. E)

Statistical Physics (e.g. Manos & Ruffo, 2010, nlin.CD/1006.5341)
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Outlook

* Behavior of GALI,_indices :

v

DN N N

for time dependent Hamiltonians

for systems with additional integrals of motion
for dissipative systems

for time series

near the boundary of stability islands, where the phenomenon of stickiness is prominent

* Characteristics of GALI, indices :

v

estimation of the limiting GALI, value for regular orbits of multidimensional systems

* Applications

v
v

v

models studied at UCT

identification of the selftrapped and spreading parts of wave packets in disordered
nonlinear lattices

performance optimization of real accelerators

e Other chaos detection techniques

v
v

Computation of the spectrum of LCEs using the compound matrix theory
Review paper: Comparative study of the various existing methods

H. Skokos Department of Maths, UCT, Cape Town, South Africa 25 May 2011



Main references

« SALI
v" Ch.S. (2001) J. Phys. A, 34, 10029
v" Ch.S., Antonopoulos Ch., Bountis T. C. & Vrahatis M. N. (2003) Prog.
Theor. Phys. Supp., 150, 439
v' Ch.S., Antonopoulos Ch., Bountis T. C. & Vrahatis M. N. (2004) J.
Phys. A, 37, 6269

« GALI
v" Ch.S., Bountis T. C. & Antonopoulos Ch. (2007) Physica D, 231, 30-54
v' Ch.S., Bountis T. C. & Antonopoulos Ch. (2008) Eur. Phys. J. Sp.
Top., 165, 5-14
v" Manos T., Ch.S. & Antonopoulos Ch. (2011) arXiv:nlin.CD/1103.0700

 Lyapunov exponents
v" Ch.S. (2010) Lect. Notes Phys., 790, 63-135

H. Skokos Department of Maths, UCT, Cape Town, South Africa 25 May 2011



